1. 2 is a 'critical value', e.g. used in solution, or $x=2$ seen as an asymptote
$x^{2}=2 x^{2}-4 x \Rightarrow x^{2}-4 x=0$
$x=0, x=4 \quad$ M1: two other critical values
$x<0 \quad$ B1
$2<x<4 \quad$ M1: An inequality using the critical value $2 \quad$ M1 A1 6

First M mark can be implied by the two correct values, but otherwise a Method must be seen.
\leq appearing: maximum 1 mark penalty (at first occurrence).
2.
(a) $m^{2}+2 m+5=0 \quad \Rightarrow \quad=-1 \pm 2 \mathrm{i}$
M1 A1
$x=e^{-t}(A \cos 2 t+B \sin 2 t)$
M : Correct form (needs the two different constants)
M1 A1 4
(b) $\quad(1,0) \quad \Rightarrow \quad A=1$ dB1
$\dot{x}=-\mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t)+\mathrm{e}^{-t}(-2 A \sin 2 t+2 B \cos 2 t)$ M: Product diff. attempt dM1
With $A=1, \mathrm{e}^{-t}\{\cos 2 t(-1+2 B)+\sin 2 t(-\mathrm{B}-2)\}$

$$
\dot{x}=1, t=0 \quad \Rightarrow \quad 1=-\mathrm{A}+2 B \quad \text { M1 }
$$

$B=1 \quad\left(x=\mathrm{e}^{-t}(\cos 2 t+\sin 2 t)\right)$
M: Use value of A to find B. dM1 A1cso
(c)

'Single oscillation' between 0 and π
Decreasing amplitude (dep. on a turning point)
Initially increasing to maximum
B1ft
Any one correct intercept, whether in terms of π or not: 1 or $\frac{3 \pi}{8}$ or $\frac{7 \pi}{8}$ B1 4
(Allow degrees: 67.5° or 157.5°) (Allow awrt 0.32π or 1.18 or 2.75)
(a) First M: Form and attempt to solve auxiliary equation.
$2^{\mathrm{nd}} \mathrm{M}: A \mathrm{e}^{(-1+2 \mathrm{i}) t}+5 \mathrm{e}^{(-1+2 \mathrm{i}) t}$ scores M1, as does $A \mathrm{e}^{m_{1} t}+B \mathrm{e}^{m_{2} t}$ for real m_{1}, m_{2}.
(b) B mark and first and third M marks are dependent on the M's in part (a).
(c) First B1: Starts on positive x-axis, dips below t-axis, above t-axis at $t=\pi$, and no more than 2 turning points between 0 and π
(Assume 0 to π if axis is not labelled).
Second B1ft: Increasing amplitude for positive real part of m.
Third B 1ft: Initially decreasing to minimum for negative B.
Initially at maximum for $B=0$.
Final B1: Dependent on a sketch attempt.
Confusion of variables: Can lose the final A mark in (a).
3.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{3 x-4 v x}{4 x+3 v x} \quad$ (all in terms of v and x)
$x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{3-4 v-v(4+3 v)}{4+3 v}$
(Requires $x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{f}(v), 2$ terms over common denom.)

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{3 v^{2}+8 v-3}{3 v+4}
$$

(b) $\frac{3 v+4}{3 v^{2}+8 v-3} \mathrm{~d} v=-\frac{1}{x} \mathrm{~d} x \quad$ Separating variables \quad M1

$$
\pm \ln x
$$

B1

$$
\begin{array}{ll}
\frac{1}{2} \ln \left(3 v^{2}+8 v-3\right) & M: k \ln \left(3 v^{2}+8 v-3\right) \\
\frac{1}{2} \ln \left(\frac{3 y^{2}}{x^{2}}+\frac{8 y}{x}-3\right)=-\ln x+C & \text { Or any equivalent form }
\end{array}
$$

M1 A1
(c) $\frac{3 y^{2}}{x^{2}}+\frac{8 y}{x}-3=\frac{A}{x^{2}}$

Removing ln's correctly at any stage, dep. on having C.
Using $(1,7)$ to form an equation in A (need not be $A=\ldots$)
$(1,7) \Rightarrow 3 \times 49+56-3=A \quad \Rightarrow \quad A=200 \quad$ (or equiv., can still be \ln)A1
$3 y^{2}+8 y x-3 x^{2}=200$
$(3 y-x)(y+3 x)=200 \quad$ (M dependent on the 2 previous M's) M1 A1 cso 5

Parts (b) and (c) may well merge.
(b) Partial fractions may be used $\left(A=\frac{3}{2}, B=\frac{1}{2}\right)$, giving $\frac{1}{2} \ln (3 v-1)+\frac{1}{2} \ln (v+3)$.
(c) Final M requires formation and factorisation of the quadratic.
4. (a) (i) $r^{2} \sin ^{2} \theta=a^{2} \cos 2 \theta \sin ^{2} \theta=a^{2}\left(1-2 \sin ^{2} \theta\right) \sin ^{2} \theta$

B1 1 $\left(=a^{2}\left(\sin ^{2} \theta-2 \sin ^{4} \theta\right)\right)$
(ii) $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(a^{2}\left(\sin ^{2} \theta-2 \sin ^{4} \theta\right)\right)=a^{2}\left(2 \sin \theta \cos \theta-8 \sin ^{2} \theta \cos \theta\right), \quad=0$ M1, A1, M1

$$
\begin{array}{lrr}
2=8 \sin ^{2} \theta & & \text { (Proceed to a } \left.\sin ^{2} \theta=b\right) \\
\sin \theta=\frac{1}{2} \quad \Rightarrow \quad \theta=\frac{\pi}{6}, \quad r=\frac{a}{\sqrt{2}} \quad \text { M1 } \\
\hline
\end{array}
$$

(b) $\frac{a^{2}}{2} \int \cos 2 \theta \mathrm{~d} \theta=\frac{a^{2}}{4} \sin 2 \theta \quad$ M: Attempt $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$, to get $k \sin 2 \theta$ M1 A1

$$
[\ldots]_{\pi / 6}^{\pi / 4}=\frac{a^{2}}{4}\left[1-\frac{\sqrt{ } 3}{2}\right] \quad \text { M: Using correct limits } \quad \text { M1 A1 }
$$

$\Delta=\frac{1}{2}\left(\frac{a}{\sqrt{2}} \cdot \frac{1}{2}\right) \times\left(\frac{a}{\sqrt{2}}-\frac{\sqrt{ } 3}{2}\right)=\frac{\sqrt{ } 3 a^{2}}{16}$
M: Full method for rectangle or triangle

$$
R=\frac{\sqrt{ } 3 a^{2}}{16}-\frac{a^{2}}{4}\left[1-\frac{\sqrt{ } 3}{2}\right]=\frac{a^{2}}{16} \quad(3 \sqrt{ } 3-4)
$$

M: Subtracting, either way round
(a) (ii) First A1: Correct derivative of a correct expression for $\mathrm{r}^{2} \sin ^{2} \theta$ or $r \sin \theta$.
(b) Final M mark is dependent on the first and third M's.

Attempts at the triangle area by integration: a full method is required for M1. Missing a factors: (or a^{2}) Maximum one mark penalty in the question.
5. $\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$
$\cos \frac{\pi}{10}+\mathrm{i} \sin \frac{\pi}{10}$ B1
$\cos \left(\frac{(4 k+1) \pi}{10}\right)+\mathrm{i} \sin \left(\frac{(4 k+1) \pi}{10}\right), k=2,3,4$ (or equiv.)
M1 A2, 1, $0 \quad 5$
$\left[\cos \left(\frac{9 \pi}{10}\right)+i \sin \left(\frac{9 \pi}{10}\right), \quad \cos \left(\frac{13 \pi}{10}\right)+i \sin \left(\frac{13 \pi}{10}\right), \cos \left(\frac{17 \pi}{10}\right)+i \sin \left(\frac{17 \pi}{10}\right)\right.$
[Degrees : 18, 90, 162, 234, 306]
6. $\left(\frac{d y}{d x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h} \Rightarrow 2 \approx \frac{y_{1}-y_{-1}}{0.2} \Rightarrow y_{1}-y_{-1} \approx 0.4$
$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{2 h} \Rightarrow 8 \approx \frac{y_{1}-2 y_{0}+y_{-1}}{0.01}$
[For M1, an attempt at evaluating $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d}^{2}}\right)_{0}$ is required.]

$$
\Rightarrow \quad y_{1}+y_{-1} \approx 2.08
$$

Subtracting to give $y_{-1} \approx 0.84$
M1 A1 6
7. (a) Correct method for producing $2^{\text {nd }}$ order differential equation
e.g. $\frac{\mathrm{d}}{\mathrm{d} x}\left\{(1+2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}\right\}=\frac{\mathrm{d}}{\mathrm{d} x}\left\{x+4 y^{2}\right\}$ attempted
$(1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ seen + conclusion $\quad A G$
A1 2
(b) Differentiating again w.r.t. x :
$(1+2 x) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=8 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}-2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ or equiv. M1 A2, 1,0 0
[e.g. $\quad(1+2 x) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+4(2 y-1) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}($ at $x=0)=1$

Finding $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}} \quad$ at $\left.x=0\right) \quad(=3)$
Finding $\frac{\mathrm{d}^{3} y}{\mathrm{dx} x^{3}}$, at $x=0 ;=8$ [A1 f.t. is on part (c) values only] M1 A1ft
$y=\frac{1}{2}+x+\frac{3}{2} x^{2}+\frac{4}{3} x^{3}+\ldots$
M1 A1 6
[Alternative (c):
Polynomial for $y: y=1 / 2+a x+b x^{2}+c x^{3}+\ldots$
In given d.e.:
$(1+2 x)\left(a+2 b x+3 c x^{2}+\ldots\right) \equiv x+4\left(1 / 2+a x+b x^{2}+c x^{3}+\ldots\right)^{2}$
$\mathrm{a}=1 \quad$ B1, \quad Complete method for other coefficients M1, answer A1
8. (a) Relating lines and angle (generous)
[angle between $\pm 2 \mathrm{i}$ to P and ± 2 to $P]$
Angle between correct lines is $\frac{\pi}{2}$
M1 A1 4
Circle
Selecting correct ("top half") semi-circle.
[If algebraic approach:
Method for finding Cartesian equation
M1
Correct equation, any form, $\Rightarrow x(x+2)+y(y-2)=0 \quad$ A1
Sketch: showing circle M1
Correct circle $\{$ centre $(-1,1)\}$, choosing only "top half" A1]
(b) $|\mathrm{z}+1-\mathrm{i}|$ is radius; $=\sqrt{ } 2$
(c) $\mathrm{z}=\frac{2(1+\mathrm{i})-2 \omega}{\omega} \quad\left(=\frac{2(1+\mathrm{i})}{\omega}-2\right)$

$$
\frac{z-2 \mathrm{i}}{z+2}=\frac{2(1+i)-2(1+\mathrm{i}) \omega}{2(1+\mathrm{i})} \quad(=-\omega)
$$

$\operatorname{Arg}(1-\omega)=\frac{\pi}{2} \quad$ is line segment, passing through $(1,0) \quad$ A1, A1

$$
\begin{aligned}
& \text { Alt (c): } u+i v=\frac{2+2 \mathrm{i}}{(x+2)+i y}=\frac{(2 x+2 y+4)+\mathrm{i}(x+2-y)}{(x+2)^{2}+y^{2}} \\
& x=-1+\sqrt{2} \cos \theta, y=1+\sqrt{2} \sin \theta \\
& \Rightarrow \text { M1 } \\
& \Rightarrow w=\frac{(2 \sqrt{2} \cos \theta+2 \sqrt{2} \sin \theta+4)+i \ldots . . .}{(2 \sqrt{2} \cos \theta+2 \sqrt{2} \sin \theta+4)}\{=1+i \mathrm{f}(\theta)\} \\
& \Rightarrow \text { A1, } \\
& \Rightarrow \text { part of line } u=1, \quad \text { show lower "half" of line } \quad \text { A1, A1 }
\end{aligned}
$$

